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Abstract--The paper is concerned with the flow of dispersions of gas bubbles in liquid, with bubble sizes 
such that the inertia forces on the bubbles are of importance to the dynamics. One-dimensional 
conservation equations are derived, which govern the flow when the deviations from the uniform state 
are small. These are used to describe the features of the propagation of void fraction disturbances, and 
to investigate the stability of uniform bubbly flows. The results are compared with what has been observed 
in experiments. 
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1. I N T R O D U C T I O N  

During the past decade an experimental research programme on the propagation of void fraction 
waves in bubbly fluids has been carried out at the Centre d'l~tudes Nucl6aires de Grenoble by Bour6 
and co-workers (Mercadier 1981; Micaelli 1982; Matuszkiewicz et al. 1987). Void fraction 
disturbances caused by natural or imposed fluctuations of the rate of air supply were detected by 
means of impedance probes mounted in the walls of vertical tubes. The wave properties were 
deduced by correlation techniques. The observations of Mercadier (1981) of waves in bubbly fluids 
with mean void fractions up to 28% may be summarized as follows: 

- -  The detected wave frequencies v do not exceed a few Hz: for a void fraction of 
8%, v < 2 Hz in stagnant fluid and v < 10 Hz when the superficial liquid velocity 
is 1.0 m/s. 

- -  The phase velocity of the waves does not significantly depend on the frequency. 
- -  The phase velocity of the waves is less than the mean bubble velocity and larger 

than the mean fluid velocity. 
- -  The attenuation of the waves decreases with increasing value of the mean void 

fraction. 

Micaelli (1982) made measurements in highly turbulent flows, superficial liquid velocities in the 
range of 1-8 m/s, with mean void fractions up to 20%. He concluded that the attenuation rate is 
proportional to the square of the wave frequency. 

Matuszkiewicz et al. (1987) report similar observations for bubbly fluids with void fractions up 
to 35% and a fixed superficial liquid velocity of 0.18 m/s. In addition it was found that in the range 
of void fractions of 35-45% a smooth transition seems to occur: void fraction disturbances are 
either slightly damped or amplified, the experimental accuracy was not sufficient to draw 
conclusions. Void fraction waves were definitely unstable for void fractions > 45% and slugs could 
be observed in the upper part of the test section. The dominant frequency of the unstable waves 
showed a slight increase with the void fraction: 1.0 and 1.2 Hz for void fractions of 47 and 50%, 
respectively. The authors remark that the actual appearance of gas slugs results from a weak 
instability of the bubbly flow and that it entails a transition length. They finally conclude that their 
work has substantiated the existence of a relationship between the bubbly-slug flow transition and 
a void fraction wave instability in the bubbly flow. 

The purpose of our paper is to explain the observations of linear void fraction wave propagation 
by the group at the C.E.N.G. and to investigate whether a uniform bubbly flow is unstable to void 
fraction disturbances above some critical value of the void fraction. We shall make the simplifying 
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assumptions that the bubbly dispersion is uniform in the unperturbed state, and that it consists 
of equally sized spherical bubbles with a diameter such that irrotational flow theory can be used 
to describe their motion. Only the propagation of one-dimensional planar disturbances will be 
considered, and wall effects will not be taken into account. The basic equations for the analysis 
are the conservation equations for mean number density and mean momentum of the gas bubbles. 
Unfortunately, there exists no agreement on the way in which transient and dynamic pressure forces 
exerted by the fluid, are to be incorporated in the bubble momentum equation. Therefore, a 
substantial part of the paper is devoted to a formal derivation of this equation. The method used 
is that of averaging over an ensemble of realizations of the flow, similar to that of the kinetic theory 
of dense gases (Hirschfelder et al. 1954; Rice & Gray 1965). Throughout the analysis it will be 
assumed that the fluid flow around the bubbles is laminar; but arguments will be given that make 
clear that the resulting equations may also be applied to turbulent flows. 

In section 2 an approximate expression for the force on a reference bubble in one realization 
of the flow is derived. A few relevant concepts of kinetic theory are mentioned in section 3; the 
averaging process leading to the required conservation equations is then performed in section 4. 
The result is a momentum equation in which various flow parameters are defined in terms of the 
probability distribution function of the positions and velocities of the bubbles. These parameters 
are subsequently modelled by phenomenological reasoning in section 5. The propagation of linear 
void fraction waves is the subject of section 6 and the linear stability of a uniform bubbly flow 
is considered in section 7. 

Two months after the first version of our paper was submitted, an article by Professor G. K. 
Batchelor was published (Batchelor 1988) that presents a theory of the instability of uniform 
fluidized beds. Our work conforms in many respects to that of Professor Batchelor, and when 
revising our paper it turned out that it could be improved by making use of parts of his analysis. 
A reference to Batchelor (1988) will be given wherever this has been done. 

2. AN E Q U A T I O N  OF M O T I O N  FOR A B U B B L E  IN ONE REALIZATION 
OF THE FLOW 

A single bubble 

Experiments have shown that a single bubble in pure water will rise rectilinearly, while 
maintaining an approximately spherical shape, if the Reynolds number (Re) of the motion, based 
on the bubble diameter, is about 100. A method to calculate an expression for the rise velocity is 
explained in Moore (1963) and Batchelor (1967; section 5.14): The flow field is approximately 
irrotational with vorticity being confined to a relatively thin boundary layer and wake with 
dimensionless thickness and diameter of O(Re-1/2) and O(Re-i/4), respectively. At the free surface 
only continuity of the tangential stress is required, and as a consequence the dimensionless velocity 
perturbations in the boundary layer and the wake are only of O(Re-~/2). This allows one to 
determine a first-order approximation to the drag coefficient of the bubble from a calculation of 
the rate of dissipation in the fluid, based on the assumption that the flow field is wholly irrotational. 
Equating this to the rate of work done by the drag force yields 

48 
Cd = Ree + O(Re-3/2)' 

The frictional force Ff~ and the velocity of rise v~ are then given by 

Ff  = - 1 2 n a # L V  ~ [1] 

and 

(PL - -  P G ) g a  2 

V~ = 9#L ' [2] 
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where a is the bubble radius, #L is the liquid viscosity and g is the gravitational accelerator; PL and 
P6 denote the liquid density and gas density, respectively. As a typical example: a bubble with radius 
a = 0 . 4 m m  would rise in water (at room temperature) with a velocity v~--17.4cm/s with 
corresponding Reynolds number, Re = 140. 

An expression for the force exerted by the fluid when a bubble is in unsteady motion can be found 
by the following argument (Lighthill 1986; section 8.3): The irrotational flow can at each instant 
be imagined to have been set-up from rest by a large impulsive force F acting on the bubble over 
a very small time z. The total impulse imparted to the bubble and the fluid, the Kelvin impulse 
I, is given by the time integral of the force 

j" I = Fdt ,  
0 

which is equal to 

I = ~za3pGv + IL, [3] 

where v is the bubble velocity at the moment of consideration and the fluid impulse IL is defined 
by 

IL = --PL f~bn dA. [4] 

Here ~b is the velocity potential of the irrotational flow, and dA is a surface element coinciding with 
the surface of the bubble, with unit normal n directed into the fluid. Solving the potential flow 
problem shows that the fluid impulse may be written as 

IL=m~v,  with m~=2~za3pL. [5] 

This suggests that the presence of the fluid effectively increases the mass of the bubbles by a term 
m~, the added mass. Alternatively, the fluid impulse may be interpreted as an addition to the 
momentum of the bubble. The change in the Kelvin impulse in a very small time dt can be written 
a s  

dl  = d(47zaapGv + IL) 

= F d t  - F d t  =Fdt .  

It follows that if the fluid were inviscid, the force exerted on the bubble would be equal to minus 
the rate of change of the fluid impulse. 

The result can also be found from an energy argument. The velocity of the bubble increases 
during the very short time interval z like (t/Qv; and the kinetic energy transmitted by the force 
F is given by the time integral 

T v ' F d t  = ½v'Fz I = = i v .  I.  

So, over a short interval dt the change in the kinetic energy will be 

dT = d(½(~a 3 pG)v • v + ½v. IL). 

In the absence of external forces it is then found from Lagrange's equation that 

d d Vv(½v • IL), 
dt Vv(½(~a3pG)v " v) = -- d't 

corresponding with what was found above. 
The viscosity of the fluid gives rise to a frictional force that is approximately given by [l], but 

with v~ now replaced by the instantaneous value of the velocity. The changes in the vorticity 
distribution of the rotational flow regions due to the unsteady motion of the bubble will also cause 
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a force, but this contribution is usually taken to be of the same order as the terms that are neglected 
in [1]. Thus, we finally obtain the equation of motion: 

d (~zra3pcv)= d 
dt d-t (IL) - 12na/~Lv + 4zta3(pG -- PL)g. [6] 

A bubble in a dispersion 

We now assume that the methods presented above can also be used in a derivation of an equation 
of motion for a "reference bubble" in a bubbly dispersion. The velocity field outside the boundary 
layer attached to the reference sphere will not be wholly irrotational due to the presence of vorticity 
that is produced in the boundary layers of bubbles that have passed through the region of location 
of the reference sphere. Although the velocity fluctuations in these rotational parts of the flow will 
still be small, they may give rise to a significant contribution to the total rate of energy dissipation, 
because the volume of the rotational flow regions may, particularly for large void fractions, not 
be negligibly small in comparison with that of the irrotational part of the flow. Still, for want of 
something better we determine the forces on a reference bubble of a dispersion in a manner 
analogous to that employed in the case of a single bubble. 

To this end, consider an element of the dispersion of volume V, containing a large number of 
bubbles N, N ~> 1. The positions Xk and velocities ik, k = 1 . . . . .  N, of the bubbles will be defined 
with respect to a frame of reference in which there is no net volume flux, i.e. a frame moving with 
the mean velocity of the dispersion. If it is assumed that the dispersion is uniform this velocity is 
specified by the volume fluxes of gas and liquid that are supplied to the system. In this paper only 
one-dimensional, planar void fraction disturbances to a uniform dispersion will be considered. In 
such a case, if the gas and liquid supply remain unchanged the mean volume flux is constant, on 
account of the incompressibility of the two phases; changes in the volume flux of gas are 
compensated by changes in the liquid volume flux. It is this situation that is envisaged in the 
following derivations. When, as in the experiments, the planar disturbances are a result of changes 
in the supply of either of the phases the mean velocity is merely a function of time. It is not difficult 
to make allowance for this effect in the resulting equations of motion; the pertinent equations will 
be given at the end of section 5. 

In the absence of any forces, including gravitational forces, the bubbles and the fluid will move 
with a uniform velocity that is determined by the volume fluxes of the two phases as supplied to 
the system; this velocity is equal to the mean velocity of the dispersion and so with respect to the 
chosen reference frame the system can be considered "at rest". Then, in the actual situation, at 
any given instant the irrotational part of the velocity field can be imagined to have been set-up 
instantaneously from "rest" by the action over a very short time of large impulsive forces on the 
bubbles, and on the material boundary of the element. This boundary, 6A say, will, if randomly 
chosen, consist both of particles of fluid and of gas. The kinetic energy, transmitted to the element 
of the dispersion by the action of the distribution of impulsive forces, is equal to 

(½~k'lk) + f p~b Vq~ .ndA. [7] 
k=l JfiA 

Here the unit normal n is taken to direct outwards from the element and p is either equal to the 
gas density or to the liquid density, depending on whether the surface element n dA coincides with 
a material surface element that consists of gas particles or liquid particles. In analogy with the case 
of a single bubble the "Kelvin impulse associated with bubble k" is 

I k = ~z~a3pG~k + ILk [8] 

with a "fluid impulse associated with bubble k"  defined by 

= -PL .fc~ dAk. [9] 

This fluid impulse of bubble k will be a linear function of the velocities of the spheres and will also 
depend on their relative positions. When we let the volume element be indefinitely large, then at 
any instant the contribution from the integral over the boundary 6A to [7] will become very small 
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compared to that of  the first term. It follows that, if the fluid is assumed to be inviscid, the equation 
of  motion of bubble j is given by Lagrange's equation (Goldstein 1980, pp. 20-21): 

d 
dt (V,j (T - U)) - V,j(T - U) = 0, [10] 

where T and U are defined by 

and 

N 
T ~ 1 4  3 • . = i(~na pG)Xk Xk 

k=l 

N 
U = - E ½Xk'ILk" 

k=l 

If we assume, as for a single bubble, that the flow is wholly irrotational, the rate of  energy 
dissipation through the action of viscosity can be expressed as (Batchelor 1967, section 5.14) 

~ = # L ~ f d A k ' V ( ~ )  2 , k = ,  i = 1 , 2 , 3 .  

The frictional force on bubble j will be a linear function of  the bubble velocities, and we may 
therefore derive it in terms of  Rayleigh's dissipation function i~, defined as half the rate of  energy 
dissipation (Goldstein 1980, p. 24): 

ef j=  - Vii ~ = Vii ( - ½ # L  k=l ~" f dAk" v(~b\g3Xi/1~2"~,]" [l 1] 

If we further include the gravitational force and the buoyancy force the (approximate) equation 
of  motion for reference bubble j finally becomes, upon evaluation of  [10]: 

dt lj = V,,j ~ ½xk" IL, + Fr, + 4na3(pG-- PL)g, [121 
k=l 

where the impulses and the frictional force are defined by [8], [9] and [11]. 

3. E L E M E N T S  OF K I N E T I C  T H E O R Y  

The method of  averaging that will be employed in the next section for the derivation of  the 
equations of  motion of  the bubbles is that of  averaging over an ensemble of  realizations of the 
flow. To this end a probability density function if(fiN, @N, t) is introduced such that 

ff(C~N, C~N, t)6CCN, 6C~N =f f (Xl ,  X2 . . . . .  XN, i l ,  iS . . . . .  iN, t )f  Xl, fiX2 . . . . .  3XN, f i l ,  fiX2 . . . . .  f i n  

is the probability of finding N bubbles, where N >3, 1, at time t in the volume elements 
3xt ,6x2 . . . . .  6xN, f i t , 6 i 2  . . . . .  f i n  around the points xt,x2 . . . . .  xN, i t , i  2 . . . . .  i N of 6N- 
dimensional phase space. A point in this space specifies the positions xk, k = 1, 2 . . . . .  N, and 
velocities ik of the N bubbles in one realization of the flow. Since the bubbles are assumed to be 
identical rigid spheres this probability density function is normalized by 

f ~fN(q¢ N, c~ N, t) d~N dC~N = N!. 
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Mean flow parameters such as the mean number density n(x, t), the mean void fraction E(x, t) 
and the mean bubble velocity v(x, t) are defined by 

lff n(x, t) = ~ ~ ~(xk - x)fN(~N, ~N, t) d~'N d~N, [131 
k=l 

E(X, t) = ~ga3n(x, t) [14] 

and 

l f f ~ , 6 ( X , - - x ) f N ( C g N ,  C~N,t)dCgNdC~N; [15] n(x, t)v(x, t) = N.I ,=, 

definitions of other relevant flow parameters will be given in the next section. 
The distribution function fN  satisfies the Liouville equation 

dfN N 
+ [vXk'  + • = 0 ,  

k = l  

which merely expresses that systems constituting the ensemble are neither created nor destroyed. 
From the Liouville equation one can derive the so-called general equation of change, which in 
textbooks on the kinetic theory of dense gases is often taken as a starting point for the derivation 
of the conservation equations of hydrodynamics (Hirschfelder et al. 1954; Rice & Gray 1965): 

Let fl(xt, x2 . . . . .  XN, i t ,  32 . . . .  ,/~N) be a dynamical variable that does not explicitly depend on 
time. The ensemble mean value of fl is, as above, defined by 

where the latter notation using brackets is sometimes more convenient in what follows. Multipli- 
cation of the Liouville equation by fl and performing the averaging yields 

N 
Ot ( f l ; fN)  = __ E (fl;V*k" (R~f N) + V,," (x,fN)). 

k = l  

After partial integration over the phase space, under the assumption t h a t f f ~ 0  sufficiently rapidly 
as Ix, . . . . .  XN, R, . . . . .  RN[ ~00,  this finally becomes the general equation of  change 

0 N 
- -  " " V  . N Ot <fl;fN> = _ ~ (/~k V~kfl +~k 'k f l ' f  5' [16] 

k=l 

Physically relevant conservation equations can be be derived by introducing into this equation 
choices of fl for which the related ensemble averages can be interpretated as meaningful 
(observable) flow parameters. 

4. D E R I V A T I O N  OF THE E Q U A T I O N S  OF M O T I O N  

Conservation of number density and void fraction 
A conservation equation for the mean number density of the gas bubbles follows from the choice 

N 

= 6 ( x  j -  x ) .  
j = l  

For fixed k we have in the r.h.s, of [16], 

Next, performing the averaging yields, upon use of the definitions [13] and [15], 

dn 
- -  = - V x '  ( n v ) .  [17]  
c3t 
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Multiplication of  [17] by 4/3 xa 3 gives the void fraction conservation equation 

t~E 
- -  = - V , .  (Ev) .  
Ot 

[181 

N o t e  that an equation equivalent to the familiar continuity equation of a fluid is found when [18] 
is multiplied by the gas density PG; PGE is the mass density of the bubbles. 

Conservation of bubble momentum and Kelvin impulse 

The analyis of  section 2 suggests that a convenient choice for a derivation of a momentum 
equation for the bubbles is 

N N 

/~ = ~ Ij6(x - x) = ~ (~a3pG~j + ILj)6 (Xj -- X). [191 
j = l  j - I  

With [19], rewriting of the general equation of change will yield an equation expressing the 
conservation of  the mean Kelvin impulse, rather than a conservation equation for the mean bubble 
momentum. The derivation is straightforward but somewhat lengthy and is almost analogous to 
that given in Rice & Gray (1965, section 6.2.B); the essential steps are given below. 

After substitution of  [19], the r.h.s, of  [16] will include a term which for fixed k can be rewritten 
as follows: 

=~k" IkVx, 6 ( x , - - x ) +  Vx,( I j )J (x j -x)  + ~ ~k'V~(Ij)6(Xj--X) 
j=l  j=l  

N 

= - V x .  (lk~,~(x, - x)) + ~ (**. vx, + ~,. v , ,  )(Ij),~(xj- x). 
j=l  

With this result the general equation of  change becomes 

In the second term on the r.h.s, of [20] we may write 

N 

Z (Xk' VI, + Xk" V,, )Ij = |j, [21a] 
k=l 

i.e. the time rate of change of the Kelvin impulse associated with bubblej.  Upon use of  the equation 
of  motion for a bubble in one realization of the flow, viz. [12], [21a] becomes 

( ; )  = Vxi 1 ½Xk "ILk + Fr, + 47za3(Pc -- PL)g• [21b] 

Finally, the contribution to [20] from the first term of [21b] is written as the divergence of a (stress) 
tensor• In order to do so, note that the fluid impulse associated with a bubble k, viz. ILk, is a function 
of  the relative bubble positions x i -  xj, i e j  = 1 . . . . .  N. Assuming that it is possible to rewrite the 
first term of [21b] in a pairwise decomposed form, i.e. 

(~Xk I L  k ) = • • ~X k I L  k 
k= l  " "= k = l  tj ~ 

where (. • .)~j is a function of x~ - xj only, it follows after some manipulation that the contribution 
under consideration is 
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Vxi ~ , '  It, 3(x i -  x) 
)=1 1 

= ~ Vxj ~xk" IL, 
' '= k=l  

XJ "4 E Xk" IL* Xi)Vx/~(X j -  X) 
i#j= I k= 1 

=--Vx'(~Vxj(I~:ck'ILk)o(Xj--X~)6(Xj--X)).k4k=, [22] 

Here we have used in the second step 

~(x~ -  x) = ~(x~ + ( x , -  xj) - x) = 6(xj - x) + ( x i -  x j ) .  V,  ~ ( x j -  x) + . . . .  

Upon introducing [21a, b] and [22] into [20], and a subsequent rearrangement of terms, the 
conservation equation of mean Kelvin impulse (or of mean bubble momentum) becomes 

L (n(~na3pG v + iL)) + Vx" (n(4xa3pGv + iL)V) - -  Vx' (~G "~ ~L) : n F f +  n4xa3(p G -- PL)g, [23] 
~t 

where the flow parameters are defined by the ensemble averages: 
- -mean fluid impulse l L 

niL(x, t)= ~ f f ,~, (- PL f ep dA,)'~(x,-- x)fU(%,<eN, t)d%d~u; 
- -mean viscous drag force Fr 

l f ;2  = Fr,6(x, -- x)fN(cKN, (~N, t) d~N, dC~N, nFf(x, t) ~.) 1 

with an approximate expression for the frictional force on a bubble k given by [11], viz. 

Fr~ = Vi, 1 --~#L dAk. V , i = 1 , 2 , 3 , ;  
=1 

--(kinet ic)  bubble stress ~G 

1 . I . f ~  4 3 (:Xk ¥ ) ( X k  V)f(X,--x) fN(cgN, C~N,t)dC~Nd@N, ~ c x ,  t) - N! k=l ~rra Pc - - 

similarly defined as the kinetic contribution to stress tensor of a fluid; 
-- f luid impluse stress ~L 

~L(X, t) = ~ L K ( X ,  t) + ~Lv(X, t), 

l ff~(l,k--lO(~,--v),~(x,--x)fN(%,~N,t)d%d~u @LK(X, t) = -- N---~. k=l 

and 

- V 1 ~Lv(X, t) = ~.) X, 4 *=l ~," IL, ,j(Xy -- Xi)6(Xj -- x)fU(CCN, Cu.t) dCCu dCdN. 

AS for a fluid, the fluid impulse stress tensor may be divided into a "kinetic" contribution ~LK and 
an "interaction potential" contribution ~rv. 

Without the contributions due to the fluid, [23] is similar to the momentum equation of a gas. 
The presence of the fluid firstly yields a frictional drag and a buoyancy force. The irrotational 
pressure distribution at the bubble surface effectively increases the mean bubble momentum; in 
addition it gives rise to a stress. This can be explained in a similar manner to the occurrence of 
a stress in an ordinary fluid. Consider a "particle" of bubbles moving along with the mean velocity 
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of the bubbles. A force should be exerted by the "material" outside the particle in order to prevent 
bubbles from entering or leaving the particle as a consequence of their velocity fluctuations, i.e. 
in order to prevent a change in the "additional momentum" of the particle of bubbles. Part of the 
force is associated with the transient pressure distribution in the fluid, and related to the mean 
square of the fluctuations of the fluid impulse; the other part is needed to overcome the attractive 
and repulsive forces between the bubbles due to the dynamic pressure distribution at their surfaces. 
The force can be interpreted as a contact force exerted across the surface surrounding the particle; 
it will be proportional to the size of the surface element on which it acts and can therefore be 
associated with an effective stress. 

To describe the void fraction wave dynamics, [23] should be supplemented by relations that 
express the above defined flow parameters in terms of e, v and their derivatives. It will be clear 
that it is very difficult to give a rigorous derivation of these relations by means of solving the 
Liouville equation or a contracted version of it, and at this point we therefore have to change to 
phenomenological reasoning. Even this is difficult, because virtually no information is available on 
the dynamic~ of the bubble interactions, and the associated statistics. Nevertheless, the above 
analysis has revealed the way in which the pressure forces on the bubbles, arising from the 
irrotational part of the fluid motion, are to be included in the bubble momentum equation; this, 
and the analogy with the kinetic theory of gases, give some suggestions how to proceed with the 
modelling of the flow parameters. 

5. M O D E L L I N G  OF THE ONE-DIMENSI ONAL EQUATIONS OF MOTION 

In a uniform flow the mean velocity of the bubbles is determined by the balance between the 
buoyancy force and the mean viscous drag force exerted on the bubbles; [23] takes the form 

nFr = n(~a3)(p~ - PL)g. [24] 

The effect of hydrodynamic interactions between the bubbles on the mean frictional force may be 
represented by introducing a function f0(e), which takes on a value of 1 in the limit of vanishing 
void fraction. The subscript 0 refers to the uniform state. In combination with the expression for 
the drag force on a single bubble [1], [24] becomes 

- -  12na/~ Lf0 (£)V0 ( ( )  = 4rca 3(pG --  PL)g [251 

and the mean velocity of rise, with respect to a zero volume flux frame, is given by 

Vo(E) -fo(e)' 

where v~, the velocity of a single bubble, is determined by [2]. Experiments suggest that 

[26] 

v0(e) = v~ (1 - e )  p [27] 

with an exponent p within the range 1.8-2.3 (Hetsroni 1982, section 2.3). In the calculations of the 
following sections we shall use p = 2, which corresponds to Wallis' (1969) expression for the mean 
velocity of rise in a stagnant liquid (the slip velocity), viz Uc0(e) = v~ (1 - e ) .  Relationships for the 
mean fluid impulse and the stresses may be postulated as well for this uniform flow. The fluid 
impulse is written as 

nI L = n (~a  3pL)m0 (e)v0 (e), [28] 

where 2/3na3pe is the added mass of a single sphere. The function m0(e) again represents the effect 
of hydrodynamic interactions and mo(e)~l  for e--*0. Biesheuvel & Spoelstra (1989) examined 
various expressions for mo(e) given in the two-phase flow literature; it was found that 

1 +2¢ 
= , [29] m0(e) 1 - c 

MF 1612--D 
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due to Zuber (1964), gives reliable results up to large values of the void fraction. In a uniform flow 
the role of the stresses ~c  and ~L is similar to that of a pressure. The "kinetic" contribution to 
the effective pressure is likely to be of the form 

PeK (E) = n [4ha 3pG -Jr- ]rca 3pL m0 (e)] Av 2, [30] 

i.e. proportional to the effective density E(p~ + 1/2pLmo(E)) of the bubbles and to the mean square 
of their velocity fluctuations. A measure of these velocity fluctuations is the mean velocity of the 
bubbles and Batchelor (1988), therefore, proposed writing 

Av2(c) = H(E)V~(E), [31a] 

with 

H(Q ecp( -~-~¢~)" [31b] 

The latter choice meets requirements of vanishing of the velocity fluctuations in the limit e ~ 0  and 
in the limit of closest packing, E ~Ecp. An appropriate value of ecp is 0.62. It is not clear how to 
model the "potential" contribution to the effective pressure. Calculations by Biesheuvel & van 
Wijngaarden (1982) for the case of two spherical bubbles indicate that for angles between the 
separation vector and the vector of gravity larger than about 35 ° the interaction force between the 
bubbles is attractive for all sphere separations, and that it is repulsive for smaller angles. This 
suggests that the "potential" contribution to the effective pressure will be negative. For small values 
of the void fraction one would expect that it is small compared to that related to the velocity 
fluctuations of the bubbles; near closest packing the "potential" contribution is likely to be 
dominant. In the following we will tentatively ignore the "potential stress"; the subscript K will 
be dropped. 

A first step towards a modelling of non-uniform flows is to assume the dependency on the local 
value of the void fraction of the viscous drag and fluid impulse to remain unaltered when the flow 
is slightly perturbed. Merely replacing v0(E) in [25] and [28] by the local value of the mean bubble 
velocity yields 

and 

nFf = n [ -  12na/~Lf0(E)v] 

nil = n(]r~a3pL)mo(E )v. 

The fact that the bubbles are in "random motion" in the presence of a void fraction gradient may 
have an important diffusive effect on the wave propagation that needs to be taken into account: 
this fluctuating motion will give rise to a diffusive flux of bubble number density equal to 

On 
-6e (n l~z ,  

where 6e is an effective diffusivity. The corresponding change in the mean bubble velocity is 

6¢(n)On 
1l ~ 2 "  

It is as if each of the bubbles is acted upon by a steady force given by 

- 1 2 g a # e f 0 ( E ) - - - -  

The mean frictional force will therefore be written as 

12gal~Lr, , [ 
nFr = 4 Jo te)e v -~ 

- -  7~a 3 

3 

~z" 

6o(E) &l  
E ~ 2  " 
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If we assume that in a non-uniform bubbly fluid it is primarily the non-uniformity in the mean 
bubble velocity that causes an additional transfer of bubble momentum and fluid impulse 
"associated with a stress we may postulate that the stress will give rise to a force 

0v) 
~ - p ° ( O  + E[pc + ½PLm0(OlVe(O ~ • 

The physical processes that underlie the effective diffusivities ~e and v e suggest that these parameters 
should be proportional to a length scale and a velocity scale of the fluctuating bubble motion. We 
shall follow Batchelor (1988) and choose 

~e(E) = ~a[Av2(E)] 1/2 = ~avo(O[H(Q] u2 [32] 

and 

Ve (E) =/~a [av 2(E)]~/2 = Ilavo (E) [H(E)]~/= [33] 

with c¢ and fl constants of O(1); in the calculations of sections 6 and 7 ~¢ and fl will be set equal 
to 1. 

On the basis of the above proposals the one-dimensional equations of motion become 

& a 
a t  + ~z Ev = 0 [34] 

and 

8 , a a - P e  + ge~z at  (E(PG q- 2pLmO)V) q- ~Z (E(PG -t- ½PLmo)V 2) -- ~Z 

1 2~a#L34_ zca3 \( 5e a£ '~ 
-- Efo V + v ~ z J - - E ( R c - - R I ) g '  [35] 

where we have introduced for convenience 

Iae(¢ ) = ¢[PG + ½PL mo(Q]VE(Q • 

Functional relationships for f0, m0, Pc, fie and/z e are given by [26], [27] and [30]-[33]. 
It is useful to note that upon use of [25] and [34] the momentum conservation equation [35] can 

be rewritten as a relaxation equation 

' [ (  )1 
~pLm0 E 8v 1 a aV 

~ t  + v v - ~ v - -  Po+~pLmo aZ £(po+½PLmO) ~Z - -Pe+'e~z  

- v - v0  [ 3 6 1  
~'e E ~ " 

The prime denotes differentiation with respect to E and T e is an effective relaxation time given by 

[Po + ½PL mo@ )] a2 
%(c) = [37] 

9/ALl0 (E) 

This shows that the mean motion of the bubbles in a perturbed flow is characterized by a relaxation 
process: frictional forces tend to adapt the mean bubble velocity to a velocity that corresponds to 
a uniform state with local value of the void fraction, the inertia of the gas bubbles and the fluid 
oppose this tendency. 

Equations [34] and [35] can be used to describe the propagation of a localized void fraction 
disturbance to a uniform bubbly fluid; in that case the mean volume flux of the dispersion remains 
constant. In the experiments of Bour6 and co-workers the void fraction waves are caused by 
changes in the supply of one or both of the phases, the mean volume flux then lacing a function 
of time. By making use of the theory for an accelerating body in a uniformly accelerating perfect 
fluid (Batchelor 1967, p. 409), [34] and [35] can be adapted to describe this situation. It is more 
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convenient to use velocities that are defined with respect to a laboratory frame. If the mean bubble 
velocity and the mean velocity of the fluid in this reference frame are denoted by Uc and UL, the 
mean velocity of the dispersion is given by 

u = EUG + (1 - E)u~. [38] 

The pertinent conservation equations are 

& 63 
63t + ~z EUG = 0, [39] 

63U 
- 0 [40] 

63z 

and 

63 i 63 
63t (~[PG UG + ~pLrnO(UG -- U)]) + ~zz (E[PG UG + ½pLmo(UG -- V)]Uo) 

63uo~ 63u 63 - Pc + #~ -- EpL 
63z -~-z j -gi- 

121ta#L , - F , .  v)+ o63£l 
~ EJoI(UGL - -  E 63,TJ - -  E ( P G  - -  PL)g" [41] 

The above equations and constitutive relations for the flow parameters have been modelled under 
the assumptions that the dispersion consists of spherical bubbles and that the flow around the 
bubbles is laminar. In most of the experiments of the group at Grenoble these conditions are not 
met; the bubbles have ellipsoidal shape and the fluid flow is turbulent. The fluid turbulence may 
be considered to act like a random forcing on the bubbles, that enhances their fluctuating motion. 
The momentum equation [41] can still be used in this case, but the constitutive relations for the 
bubble pressure and the effective diffusivities may need a slight modification. At low void fractions 
in particular, the mean square of the velocity fluctuations will be larger than in the case of laminar 
flow. For bubbles of ellipsoidal shape other functional relationships for the mean Kelvin impulse 
and the mean frictional force as well as for the velocity fluctuations may be appropriate. Thus, it 
can not be expected that the model derived in this section will give quantitative agreement with 
the observations of Bour6's group; nevertheless, it should be possible to bring out the observed 
features of the propagation of void fraction waves and the (in)stability of bubbly flows. 

6. L INEAR VOID FRACTION WAVES 

Let the uniform state by given by ~ = E0, U = U0 and Uc = UG0[ = U0 + v0 (~0)]. Linearization of 
[39]-[41] yields the wave-hierarchy equation 

63 63 63 + UG° L/63Z2.J + F f ~ O Z ] L \ 6 3 t  +Co~-----tEOZ/I 632E'-I_ + -- 6, ~5Z2 / = 0 [42] \63t 

with lower-order and higher-order wave velocities given by 

Co = Uoo + EoVo [43] 

and 

c+- = Uco ¼'oPLm~VO + F( ¼'oPLm(~VO 12 . P'~ 1 'j~ 
PG + ½PL mo -- L\PG + ½PL m'~--'O,] -~ PG 4 ½--pl moJ ' [44] 

Again a prime denotes differentiation with respect to c and it is understood that functions of the 
void fraction are evaluated at the unperturbed state, E =E0. Wave motion governed by a 
wave-hierarchy equation like [42] appears in a large variety of fluid mechanical systems: flood 
surges in rivers (Lighthili & Whitman 1955), waves on turbulent liquid films, sediment waves on 
river beds (Kluwick 1977), voidage waves in fluidized beds (Liu 1982, 1983) and sedimentation 
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waves (Kluwick 1983). The wave motion is usually discussed in terms of the interaction between 
kinematic and dynamic waves. The theory originates from Lighthill & Whitman, a detailed analysis 
may be found in Whitman (1959, 1974). 

The lower-order wave velocity Co corresponds to that of the kinematic wave approximation, in 
which one sets ~e = v~ = 0. This means that is assumed that the characteristic length and time scales 
of the disturbances are sufficiently large to neglect relaxation effects due to the inertia of the bubbles 
and the fluid, and diffusive effects associated with the random bubble motion. Equation (40) then 
reduces to a functional relationship between the local volumetric flux of bubbles and the local 
bubble volume density 

EUc = + v0(E)]. [45] 

A similar relationship forms the basis of Kynch's (1952) analysis of sedimentation waves in 
suspensions of small particles, that introduced the theory of kinematic waves. Linearization of [39] 
and [40] with [45] yields the wave equation 

& ( d Oe 
+ v0 + e 7 v0_ ~-S+ U ae /,=,0~z = 0  

with a wave velocity equal to [43]. Alternatively, in the dynamic wave approximation, i.e. T¢~ ~ ,  
one assumes that inertia effects dominate the bubble motion. This would be appropriate for 
sufficiently small characteristic length or time scales of the disturbances. Equations [39]-[41] are 
then very similar to the one-dimensional equations of gas dynamics. The higher-order wave 
velocities [44] are the linearized characteristics; as in gas dynamics, dissipation occurs due to 
random motions of the constituent particles. For a dispersion of bubbles with radii of 0.4 mm, a 
value used in all subsequent calculations, the relaxation time z¢ is of order l0 -2 s and the diffusivities 
6e and v¢ are of order 10 -3 m2/s. Although these parameters are small, the experimental results can 
only be explained by considering how the inertia of the two phases and the random bubble motion, 
that are related to these parameters, affect the kinematic wave motion. It should be noted that in 
the context of bubbly flows the use of the names kinematic and dynamic waves, introduced by 
Lighthill & Whitman, may be misleading since the latter usually refers to the propagation of 
pressure disturbances. It is amusing that sound waves in a bubbly fluid are also affected by a 
relaxation process (Noordzij & van Wijngaarden 1974). 

If periodic disturbances are maintained at the pipe inlet, the features of the void fraction waves 
may be summarized as follows: 

For relatively low radial frequencies the wave propagation is approximately described by a 
linearized Burgers/Korteweg-de Vries equation: 

~e ~e 82e ~3e 
8t + Co ~z ~ [re (c + - Co) (Co - c - ) + ~ie ] ~z: + ze v~ (UGo -- Co) ~Z  3, [46] 

which can be obtained from [42] by using d/dt ,~ -coS/dz  in all derivatives except that of the 
lower-order wave. The solution is 

e ocexp(~z - i`0t), [47] 

with 

io9 I 7 , ~ - -  1 
C0 

V0 e,o2(Vo0-- ¢0) 7 '02 
j- + - + ae]. 

The phase velocity shows a slight dependency on frequency. That this dependency can hardly 
be noticed experimentally becomes clear from an evaluation of the term VeTe`02(U0 + V0 -- C0)/C3o for 
the case in which there is no mean fluid motion under unperturbed conditions, i.e. when 
UG0 = V0/(I --e0). This yields 3.10-6o92 and 2.10-~o9 2 for e0 = 0.1 and E 0 = 0.2, respectively. Both 
quantities are much smaller than 1 in the range of frequencies for which [4] is applicable (,0 ,~ l/Te, 
i.e. ,0/2n ,~ 16 Hz). Also in agreement with the experimental observations is that the phase velocity 
is less than the gas velocity and larger than the fluid velocity. The first conclusion follows directly 
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from [43], by noting that the mean bubble velocity decreases which increasing void fraction. To 
reach the second conclusion, use [26] and [38] to write [43] as 

F £0(1 ~ E0)f~ 1 u o+(uoo- U o)/1 fo _1 L 
[48] 

Both terms between parentheses are easily seen to be positive in the void fraction range used in 
the experiments. 

Figure 1 shows the gain factor exp[Re(?)co 2 Az] over a distance Az = 20 cm, the distance between 
the impedance probes in the experiments of Mercadier (1981), for imposed frequencies of 0.5, 1.0, 
1.5, 2.0 and 2.5 Hz; the liquid is taken to be stagnant. For E0 < 0.30 the attenuation increases with 
increasing value of the void fraction, which clearly contradicts the conclusions of Mercadier. For 
values of E0 between 0.30 and 0.35 the attenuation rate drops significantly while for E0 larger than 
about 0.35 the disturbances are amplified, indicating that the uniform flow is unstable. It will be 
clear from the figures that, for 0.10 ~< E0 ~< 0.30, waves with frequencies higher than only a few Hz 
will be hard to detect, particularly with signal probes mounted some distance above the pipe inlet. 
This will be easier when a liquid flux is supplied to the system in order to increase the velocity of 
the waves. Also higher frequencies will be detected. As an example, figure 2 shows the gain factor 
along the tube of waves with frequencies 2, 4, 6, 8 and 10 Hz in a bubbly fluid with mean void 
fraction of 15% and a superficial liquid velocity of 0.18 m/s, the value used in the experiments of 
Matuszkiewicz et al. (1987). 

Next, consider the propagation of periodic disturbances of relatively high frequency. To this end 
it is useful to incorporate 6ed2/dz 2 in the higher-order wave operators. The wave equation then 
becomes 

with higher-order wave velocities [44] modified into 

c~ = Uco ¼'oPLm~Vo F/¼'°ptrn°v° "~2 p: ~,~,/2, 
po+½pLmo+L\--~-+~OJ +pc+½pLmo+~_j 

[49] 

[50] 
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Figure 1. Gain factor over a distance of 20 cm as a function of the void fraction, for waves with 
frequencies of 0.5, 1.0, 1.5, 2.0 and 2.5 Hz. The liquid is stagnant. 
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Figure 2. Gain factor along a tube of void fraction waves of frequencies of 2, 4, 6, 8 and 10 Hz. The mean 
void fraction is 15% and the superficial liquid velocity is 0.18 m/s. 

and with an 
given by 

with 

and 

unaltered lower-order wave velocity given by [43]. An approximate solution is 

E ocexp(?± z - i o J t ) ,  [51] 

¢+ C+ 
I. c+-co ,c+-  uo o 

~o(c+ - c_) +" vd'~ (c+)2(c+ - c_ ) ]  

F c o t  ] 
7 - ' ~  Lze(~+ : c _ )  + ve C02 c_ c_ (c_)2(c+ - c _ )  

Solution [51] confirms that high-frequency disturbances are much stronger attenuated than those 
of  low frequency. As an example: evaluation shows that in a stagnant liquid and for a mean void 
fraction of  10% the gain factor over 20 cm of the c+ -wave with frequency of  20 Hz is about 4.10-13! 
In contrast, figure 1 shows that in this case the gain factor of a wave with frequency of  2.0 Hz is 
about 0.94. 

It can be inferred from Whitham (1959, 1974) that for the general signalling problem the wave 
motion at times t >> % is described by the lower-order wave equation [46]. Since % - 0.01 s, it is 
this lower-order wave motion that will be detected in an experiment. 

In order to establish that the group in Grenoble did indeed record the lower-order wave motion 
we performed some experiments ourselves, employing the same measuring techniques. The test rig 
consisted of  a tube of  square cross-section of  about 8 x 8 cm 2 with pairs of impedance probes for 
5 x 3 cm 2. The axial distance between pairs of probes were 20 cm. For simplicity stagnant fluid was 
used. The bubbles were produced with hypodermic needles, a method meant to reduce the scatter 
in the bubble sizes and shapes. This proved to give satisfactory results for a fixed value of the void 
fraction, but unfortunately the mean bubble diameter varied from 2.0 mm till about 3.5 mm when 
increasing the mean void fraction of  2% up to 16%. This variation and the fact that the bubbles 
were not of  spherical shape meant that [27] could not be used to predict the mean bubble velocity. 

Measured values of  the wave speed (<>) and the mean velocity of rise of the bubbles (O)  are 
shown figure 3. A quadratic fit of  f0(E) was made upon use of  the relationship [ ( 1 - c )  
Uc(E)] = Vo(E) = Coo/[fo(E)], where coo is a constant. This was subsequently used to calculate the wave 
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Figure 3. Measurements of the mean velocity of rise of bubbles in stagnant water (©) and the velocity 
of propagation of naturally occurring void fraction perturbations (O). - - - Prediction of the wave speed 
from a calculation based on a fit of the measured bubble velocities ( ) and the relation for the kinematic 

wave speed. 

velocity from [48] with UL0 = 0. Comparison of  the resulting curve (- - -) with the measured wave 
speeds (O)  establishes in our view that these waves correspond with the lower-order waves of  the 
theory. It turned out that with increasing void fraction longer correlation times were needed to 
obtain a clear peak in the cross-correlation curve, from which the wave velocity can be deduced. 
This means that the damping did increase with increasing void fraction; which is what the theory 
predicts. 

7. L I N E A R  S T A B I L I T Y  OF U N I F O R M  BUBBLY FLOWS 

The fact that the propagation of  void fraction disturbances of  infinitesimal amplitude is governed 
by the wave-hierarchy equation [49] provides a simple criterion for the stability of  uniform bubbly 
flows. The work of  Whitham (1959, 1974) shows for ve = 0 that uniform flows are unstable to 
concentration perturbations if 

c ~<c0~<c+ [52] 

is violated. In that case the attenuation rates of  both the lower-order waves and the higher-order 
waves become negative [note that z e ( c + - c o ) ( C o - C - ) + 6 e  in [47] is equivalent to 
re(c+ - c o ) ( C o -  c_  )]. For  non-zero values of  ve this criterion remains unaltered, as can be seen by 
the following analysis based on Needham & Merkin (1984) and Batchelor (1988). 

Consider a spatially periodic disturbance, with wavenumber k, to a uniform flow. The solution 
to [49] is 

E ocexp i k ( z  - c t ) ,  [53] 

with 

z , k ( c . ,  - c ) ( c  - c_ ) + ik2ve ze(c - [-/Go) + i (c  - Co) = O. 
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To find the roots of  the quadratic equation, first rewrite it in the form 

(c - 6) 2 + iP (c  - 6) - (Q  + i R )  = O, 

where 

and 

The roots of [54] are 
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[54] 

= ~(c+ - c_ )5 [55c] Q 1 

R ( C o -  6) + k 2 v ¢ % ( U c o -  6) [55d] 
k% 

and 

c = 6 - ½iP -T- i(¼P 2 - Q - iR )  In. [56] 

Introducing c = c, + ici, where c~ is the phase velocity and kci is the growth rate, into [56] finally 
yields 

C r e +  { I 2 I l lyIp2 R2]1/2}1/2, = - - ~ P  + i Q  +~t ,~-  - Q)2+ [57a] 

or, with [55a~1] 

ci -½P-T-  {~p2 I , , 2 R21,/2},12. = _ + ~[(zp Q)2 + ~a - [57b] 

The uniform flow is stable when c~ ~< 0. Some manipulation shows that this condition is equivalent 
to 

R 2 << p 2 Q  

and 

[(Co - c _  ) - k 2 v ¢ z ~ ( V G o  - c _  )] [(c+ - Co) + k 2 v o T o ( c  + - -  V~o)]/> O. 

Condition [58] can only be satisfied when 

c_ <~ Uco <~ C + 

c_k2ve%(Uco - c _ )  <~ Co <~ c+ + k2vdte(c+ - Uco). [60] 

Since the flow is to be stable for disturbances of  any wavelength, i.e. for all values of  k, criterion 
[52] is obtained again. The wave velocities and the mean bubble velocity are sketched in figure 4 
for UL0 = 0. Condition [59] is satisfied for e0 ~< 0.39. The instability occurs when the kinematic wave 
velocity becomes less than the lower of the two (modified) dynamic wave velocities. The critical 
value of  the void fraction (e0~,) appears to be 35.3%. From [60] it follows that the neutral stability 
curve is determined by 

c_ - k2vo%(U% - c_ ) = Co. 

The disturbances relevant to the instability are those of  large wavelength. 
The above analysis corroborates the idea put forward by Wallis (1969, Chap. 6) that the 

Lighthili-Whitham theory on instabilities arising out of  a wave-hierarchy violation should be 
applicable to incompressible two-phase flows. The instability can be explained in the manner of  
Liu (1982) as arising out of "focusing" of void fraction perturbations along the lower-order waves 
owing to a negative diffusion coefficient, however it seems useful to also have an interpretation of  

[58] 

[59] 

1 + k2veze 
P = [55b] 

k% ' 

? = ½(c+ + c_ ), [55a] 
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Figure 4. The mean bubble velocity (UG0), the kinematic wave velocity (Co) and the dynamic wave 
velocities ( c  and c+ ), in stagnant fluid. The uniform flow is unstable when Co < c_, i.e. for E0 > 35.3%. 

the instability in terms of  the dynamics of  the bubble motion. Evaluation of  [52] in terms of  the 
flow parameters shows that the condition for stability is given by 

( ( 4£°pLm°V° "~ 1 t 2 ~e  .ji_ 1 , 2 ~¢o PL m o Vo "~ p '~ 
eoV; + ----7-=-._ <~ + - - - -  ~ , 

PG+IpLmoJ Pc+½pLmo % \Pc+iPt .moJ  

which is identical to Batchelor's criterion for the (in)stability of uniform fluidized beds (expression 
[4.12] in his paper,) but for a differently defined effective pressure pe. An alternative form which 
more clearly indicates why the flow loses its stability is 

z , ~ '>~ , 12rta/~L _ 
-- E0v0[(pc + ~pLmo)Vo] ~. Pe " ~  "Jo 6e. [61] 

The contributions to [61] are presented in table 1; for E0 near E0cr each of  the terms appear to be 
of the same order. The instability may be interpreted as follows. Consider a small perturbation of 
very long wavelength to a uniform flow. The local mean velocity of the bubbles is then 
v - U0 + v0(E), and in the kinematic wave approximation the perturbation will propagate without 
attenuation or amplification relative to the bubbles with a velocity Ev~(E) = E0V~(E0). Next, consider 
how the inertia of the bubbles and the surrounding fluid as well as the fluctuating bubble motion, 
due to hydrodynamic interactions or to liquid turbulence, affects the wave. A slight displacement 

--E0V0[(pG + 1/2 pLmo)Vo]'~E/C3Z in order to change of an element of  bubbles would require a force 2 , 
- E0v0[(pc + 1/2 pLmo)Vo]' is negative the Kelvin impulse of the bubbles. As follows from table 1, 2 , 

for E0 >I 0.25, meaning that bubbles will be attracted to regions of larger void fraction and 
consequently that the uniform flow is unstable, if no other stabilizing force is present that drives 
bubbles down a void fraction gradient. This force is supplied by the effective compressibility of 
the bubbly fluid, due to the random bubble motions, that gives rise to a force 
-[p'~ + 9nl.ttfo(eo)6(Eo)/a2]OE/dz. The pressure term is negative for Eo 1> 0.31, i.e. effective bubble 
pressure is then destabilizing. For  e0 >I 0.35 the stabilizing force is insufficient to prevent elements 
of  bubbles to become attracted to regions of  larger void fraction, and the flow is unstable. Note 
that we have ignored the contribution of  the dynamic pressure forces on the bubbles to the effective 
pressure p~. As argued in section 5 this contribution is negative and its absolute magnitude will 
grow with increasing value of  the void fraction. These forces will therefore promote the instability 
and cause it to occur at the smaller value of  E0~r than estimated above. 
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Table 1. Contributions to the stability criterion [61] in 10 -3 N /m 2 
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12na#L ¢ 
~o - Egv~t(p~ + ~pLmo)Vo] P; ~ Jo~. Sum 

0.20 0.2 2.5 1.8 4.5 
0.21 0.2 2.3 1.9 4.4 
0.22 0.1 2.2 1.9 4.2 
0.23 0.I 2.0 1.9 3.9 
0.24 0.1 1.7 1.9 3.7 
0.25 0.0 1.5 1.9 3.4 
0.26 -0 .1  1.3 1.9 3.2 
0.27 - 0 . 1  1.0 1.9 2.9 
0.28 - 0 . 2  0.8 1.9 2.5 
0.29 - 0 . 3  0.6 2.0 2.2 
0.30 - 0 . 4  0.3 2.0 1.9 
0.31 - 0 . 5  0.1 2.0 1.5 
0.32 - 0 . 6  - 0 . 2  2.0 1.2 
0.33 - 0 . 7  - 0 . 4  2.0 0.8 

. 0.34 - 0 . 8  - 0 . 7  1.9 0.5 
0.35 - 1 . 0  - 0 . 9  1.9 0.I 
0.36 - 1 . 1  - 1 . 1  1.9 - 0 . 3  

Positive contributions cause damping of the waves, negative contributions are destabilizing. The 
uniform flow is unstable for E 0 i> 0.353, when the sum of  the three contributions is negative. 

Figure 5 shows the growth r a t e  (kc i) as a function of the wavenumber for values of the void 
fraction close to the critical value, where we have used the positive root of [56]. For void fractions 
of 0.4 and 0.5% above the critical void fraction (35.3%) the maximum growth occurs at 
wavenumbers 234 and 261 m-t, respectively. In stagnant liquid the corresponding phase velocities 
are 3.27 and 3.26 cm/s and so the frequencies of the fastest growing modes are 1.22 and 1.35 Hz, 
respectively. A gain factor of 5 is obtained after the disturbances have moved upwards over a length 
of 181 cm in the first case, and 117 cm in the second. 

It is tempting to think that the frequency of the fastest growing mode is the dominant frequency 
that will be observed in the experiments on unstable bubbly flows. As was found by Matuszkiewicz 
et al. (1987) this frequency increases with increasing value of the void fraction. Also, the slow 
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Figure 5. Growth rate of  the unstable void fraction waves as a function of  the wavenumbcr  for various 
values o f  the void fraction above the critical value (35.5%). The wavenumber of  the fastest growing wave 

appears to increase with increasing value o f  the void fraction. 
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growth of the disturbances conforms to their conclusion that the actual appearance of gas slugs 
entails a transition length, which will be shorter the larger the value of e0-E0cr. It should be 
remarked that for a superficial liquid velocity of 0.18 m/s the predicted frequency corresponding 
to the fastest growing mode is 13.0 Hz when e0 - E0cr = 0.5 • 10 -2, much higher than that observed 
by Matuszkiewicz et al. (1987). 

8. CONCLUDING REMARKS 

An approximate theory has been developed for the propagation of planar void fraction waves 
in uniform bubbly fluids. The equations of motion contain flow parameters that are determined 
by the statistics of the bubble motion. Since not much information regarding these statistics is 
available, simple models have been used for these parameters. Nonetheless, predictions of the 
theory are in qualitative agreement with the observations of void fraction waves by Mercadier 
(1981) and Micaelli (1982). The theory also shows that above some critical value of the ~'oid fraction 
a uniform bubbly fluid is linearly unstable to void fraction disturbances. Whether this instability 
is associated with the bubble-slug flow pattern transition, as the experiments of Matuszkiewicz et 
al. (1987) suggest, cannot be established by the present linear analysis. 

Liu (1983) has shown by a weakly non-linear instability analysis of the one-dimensional 
equations that govern the propagation of voidage waves in fluidized beds, that a uniformly fluidized 
bed may develop quasi-steady periodic waves by a non-linear equilibration of the growing 
amplitude of linearly unstable disturbances. This can also be understood as a restoration of the 
stability due to a non-linear modification of the lower-order and higher-order wave velocities, such 
that a condition like [52] is again satisfied. Whether a similar equilibration process occurs in bubbly 
flows is presently under investigation. 

The present analysis considers the stability of uniform bubbly flows to planar disturbances. 
Clearly, the transition to slug flow will be influenced by non-uniformities over the cross-section of 
the tube induced by the presence of the walls. There also is little doubt that the interference of 
planar disturbances with cross-stream disturbances is relevant to the transition process; there is 
need for further research here. 

Acknowledgements--The authors would like to thank L. R. Seinstra for his assistance with the experiments. 
Aspects of this work were published in Biesheuvel (1984), and were presented at the ICHMT 1987Int. Semin. 
on Transient Phenomena in Multiphase Flow, Dubrovnik, Yugoslavia (van Wijngaarden & Biesheuvel 1987). 

REFERENCES 

BATCHELOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge Univ. Press, Cambs. 
BATCHELOR, G. K. 1988 A new theory of the instability of a uniform fluidized bed. J. Fluid Mech. 

193, 75-110. 
BIESHEUVEL, A. 1984 On void fraction waves in dilute mixtures of liquid and gas bubbles. Ph.D. 

Thesis, Univ. of Twente, Enschede, The Netherlands. 
BIESHEUVEL, A. & SPOELSTRA, S. 1989 The added mass coefficient of dispersions of gas bubbles in 

liquid. Int. J. Multiphase Flow 15, 911-924. 
BIESHEUVEL, A. • VAN WIJNGAARDEN, L. 1982 The motion of pairs of gas bubbles in a perfect fluid. 

J. Engng Math. 16, 349-365. 
GOLDSTEIN, H. 1980 Classical Mechanics, 2nd edn. Addison-Wesley, New York. 
HETSRONI, G. (Ed.) 1982 Handbook of Multiphase Systems. Hemisphere, Washington, D.C. 
HIRSCHFELDER, J. O., CURTISS, C. F. & BIRD, R. B. 1954 Molecular Theory of Gases and Liquids. 

Wiley, New York. 
KLUWICK, A. 1977 Kinematische Wellen. Acta mech. 26, 15-46. 
KLUWICK, A. 1983 Small-amplitude finite-rate waves in suspensions of particles in fluids. Z. angew. 

Math. Mech. 63, 161-171. 
KYNCH, G. J. 1952 A theory of sedimentation. Trans. Faraday Soc. 48, 166-176. 
LIGHTHILL, M. J. 1986 An Informal Introduction to Theoretical Fluid Mechanics. OUP, Oxford. 



VOID FRACTION DISTURBANCES IN BUBBLY FLOWS 231 

LIGHTHILL, M. J. & WHITHAM, G. B. 1955 On kinematic waves. I. Flood movement in long rivers. 
Proc. R. Soc. Lond. A229, 281-316. 

LIE, J. T. C. 1982 Note on a wave-hierarchy interpretation of fluidized bed instabilities. Proc. R. 
Soc. Lond. A380, 229-239. 

LIu, J. T. C. 1983 Nonlinear unstable wave disturbances in fluidized beds. Proc. R. Soc. Lond. 
A389, 331-347. 

MATUSZKmWICZ, A., FLAMAND, J. C. & BOURn, J. A. 1987 The bubble-slug flow pattern transition 
and instabilities of void fraction waves. Int. J. Multiphase Flow 13, 199-217. 

MERCADIER, Y. 1981 Contribution ~ retude des propagations de perturbations de taux de vide dans 
les 6coulements diphasiques eau-air ~i bulles. Th~se, Univ. Scientifique et M6dicale et Inst. 
National Polytechnique de Grenoble, France. 

MICAELLI, J.-C. 1982 Propagation d'ondes dans les +coulements diphasiques ~t bulles ~ deux 
constituants, l~tude th6orique et exp~rimentale. Th~se, Univ. Scientifique et M6dicale et Inst. 
National Polytechnique de Grenoble, France. 

MOORE, D. W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161-176. 
NEEDHAM, D. J. & MERKIN, J. H. 1984 A note on the stability and the bifurcation to periodic 

solutions for wave-hierarchy problems with dissipation. Acta mech. 54, 75-85. 
NOORDZIJ, L. & VAN W I J N G A A R D E N ,  L. 1974 Relaxation effects, caused by relative motion, on shock 

waves in gas-bubble/liquids mixtures. J. Fluid Mech. 66, 115-143. 
RICE, S. A. & GRAY, P. 1965 The Statistical Mechanics of Simple Liquids. Wiley, New York. 
WALLIS, G. B. 1969 One-dimensional Two-phase Flow. McGraw-Hill, New York. 
WHITHAM, G. B. 1959 Some comments on wave propagation and shock wave structure with 

application to magnetohydrodynamics. Communs pure appl. Math. 12, 113-158. 
WmTHAM, G. B. 1974 Linear and Nonlinear Waves. Wiley, New York. 
VAN WIJNGAARDEN, L. & BmSHEUVEL, A. 1987 Voidage waves in mixtures of liquid and gas bubbles. 

In Transient Phenomena in Multiphase Flow (Edited by AFGAN, N.). Hemisphere, Washington, 
D.C. 

ZUBER, N. 1964 On the dispersed two-phase flow in the laminar flow regime. Chem. Engng Sci. 
19, 897-917. 


